
⁴⁴Ca doped pH-cycling study on Dentin Remineralization by Isotope Microscopy

Intrinsic ⁴⁰Ca (tooth-derived mineral) and extrinsic ⁴⁴Ca (solution-derived mineral) are distinguished by ⁴⁴Ca doped pH-cycling.

The isotope image of ⁴⁰Ca and ⁴⁴Ca distribution is revealed by a high mass-resolution stigmatic secondary ion mass spectrometry system.

The uptake of ⁴⁴Ca (tooth-derived mineral) is great in intensity especially in the superficial lesions. When fluoride is used, ⁴⁰Ca (tooth-derived mineral) distribution is absent in the surface lesions.

The pH-cycling was performed for 14 days using ⁴⁴Ca (a stable calcium isotope) in remineralization solution and fluoride application.

(b),(c), (d) Isotope Microscopy image

Dental materials DOI: 10.1016/j.dental.2018.01.022

⁽a) Transverse Microradiography image